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Background

©

In CFD, large-eddy simulation, aeroacoustics, fluid-structure
interaction are of great interest.

(2

Higher order compact (HOC) schemes represent an attractive
choice for reducing severe computational requirements.

@ For incompressible flow HOC has been used in conjunction with
simple domains discretized by static Cartesian meshes.

©

Practically relevant problems require curvilinear time-varying
meshes with limited smoothness.
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Objectives

© Extend higher order compact discretization to convection-diffusion
equation in curvilinear deforming meshes.

@ To solve incompressible Navier-Stokes (N-S) equations in time
varying domains.

@ Study impact of not so smooth body fitted grids in simulating
incompressible flow using non-conservative form of N-S equations.

@ To ensure advantages of higher order approach over existing lower
order schemes.
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Moving Domain

@ For geometries undergoing dynamic movement or deformation, a
method for accommodating boundary movements is needed before
numerical discretization of flow equations.

@ Methods available:
@ Immersed boundary method,
@ Flow domain remeshing method,
© Mesh displacement method.
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Methods

@ Immersed boundary method:
¢ Advantage- does not require the grid to conform to the shape of
geometric boundaries.
o Disadvantage- not clear if it is possible to achieve the desired high
order of accuracy.

@ Flow domain remeshing method:

¢ Advantage- no constraint on boundary movement as finite element
discretization can be used for each newly generated mesh.

o Disadvantage- computationally expensive, interpolation between
successive meshes may not maintain accuracy.

@ Mesh displacement method:

o Advantage- preserve the high order of accuracy of the underlying
scheme.
o Disadvantage- till now limited to simple boundary movement

problems. .
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Challenges

@ Continuous boundary movement requires dynamic coordinate
transformation between physical and computational domains.

@ Mapping needs to be constructed at every time step.

o Motion of the grid points introduces dynamic information, needs
to be properly accounted.
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Discretization of Governing Equation

o Higher order compact discretization of Navier-Stokes system, cast
in strong conservation form on general time-dependent curvilinear
coordinate, was introduced by Visbal & Gaitonde (2002 [1]).

o Authors in [1] approximate first derivative only and employ
repeated application of the same to compute viscous term.

o A gpatially fourth order and temporally second order compact

finite difference scheme for generalized convection-diffusion
equation was proposed by Sen (2013 [2], 2016 [3]).
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Geometric Conservation Law (GCL)

First coined by Thomas and Lombard (1979 [4]).

Integral form of GCL

d
— dv = q .nds
dt cell dcell

¢ mesh velocity.

Differential form of GCL in 2D

(fa:‘])§ + (na:J)n =0,
(ny)ﬁ + (nyJ)n =0,
(J)r = (J1)e = (J2)y = 0,

J, Ji1, Jo are spatial and temporal metrics. ’
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Understanding GCL in 1D

Consider 1D convection-diffusion equation

Non-conservative form

Jonservative form

9 9 [ 0 B
b () =0

For a dynamically deforming mesh in 1D

z=x(,T1), T=1t.
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Understanding GCL in 1D

Thus using chain rule

op  a 0% [1

a
j(_Jl + C) + ﬁJg

Shuvam Sen HOC for Deforming Domain 11 / 55



Metric Evaluation

Satisfaction of GCL is essential for simulation using conservative
form.

©

©

May not hamper computation carried out with non-conservative
form.

What about free stream preservation?

©

Nevertheless computation of temporal and spatial grid metrics
upto the respective desired levels of accuracy is imperative.

©
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© Mathematical Formulation
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Governing Equation

For transport variable ¢(z,y,t) with spatial variables (z,y) defined
over an arbitrary domain D C R? the convection-diffusion equation is

0 0? 0 0
8—? —a(x Y, t)<8 QQb + 8 f) +C1($,y,t)8—i +02($7y7t)_¢ = 3($7y7t)7

Iy
(1)
(xz,y,t) € D x (0,T] with the initial condition

¢($7y70) = ¢0($7y)7 (xay) €D (2)
and boundary condition
o
b1($,yat)¢ + bZ(xayat)a_n = g(wayat)a (l',y) € 8D, te (OaT] (3)

Here a(z,y,t) > 0 and n is unit boundary normal vector.
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Time Varying Transformation

We introduce the following time varying body fitted coordinate
transformation

$:$(f,77a7)a y:y(ganaT)a t=r (4)

from non-dimensionalized Cartesian coordinate system to the
curvilinear coordinate system, where
0(z,y) O(z,y) 0(z,y)

75 0 and J1 = y J2 = .
9(&n) o(r,n) 9 7)

Jacobian J =
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Transformed Equation

In the computational plane the equation reduces to

0 0? 0? 0?
8_f - al(fﬂ?ﬂ')% - 5(5’17’7—)85;/] - Olg(g,T],T)ﬁs
o
an

4wﬂ&mﬂ%§+m@mﬁ) = s(En ), (5)

(&,m,7) € Q x (0,T] with the initial condition

¢(§7n7 0) = ¢0(§a77)7 (fﬂ?) € (6)

and boundary condition

EmTIO+ D26 mT) 00 = glEm 7). (6m) €00, 7€ (OTL (T

Eq. () possesses positive definiteness of the diffusion matrix .
pe. >0, as >0, |8 <dajas V (&,1,7) € Q x (0,T).
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Transformed Equation

a

oy = J2 ($ + yn)

a = (355 + yg)

2a
b =-5 (zexy + yexy),

1 a

X1 = j(—JI + cyp — dxy) — 7B In(@exn + Yeyn)
—J§($727 + %27) + J(znTen + YnYen — TeTnn — y£y7m>v
1

x2 = S(=J2—cye +dug) — -5 (Js(xg% + Yen)

_Jn(xg + yg) + J(eTen + Yeyen — TnTee — ynygg>- .
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Transformed Equation

Introducing partial differential operator [A]
[A] = [~10¢e — BOgy — 20y + X105 + X20,], (8)
equation (5) reduces to:

P&, 7) + Ap(&m,7) = s(Em, 1), (&m,7) € 2% (0,7
¢(€77]70) = ¢0(§an)’ (fﬂl) € (9)
191(577777—)¢ + 192(577777—)8V¢ = 9(5777’ T)a (5777) €09, 7€ (OaT]
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Discretization [

Semi-discrete O(h*, k*, h2k?) approximation of the governing Eq. (9)
on a nine point stencil is

Oibij + Ankbij = Sij, (10)

where the discrete operator Ay, is defined as [3]

Ah,k¢i,j = (_20511',]' 5? - 2a2i,j 5727 + 51] 5§6ﬂ)¢i,j
—|—(011i,]. 5{ - IBi,j 677 + Xli,j)¢£i,j + (0121.,]. 57] - IBi,j 6{ + X2i,j)¢77i,j . (11)

h and k are uniform step sizes along £ and 7 directions respectively.
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Discretization 11

Compatible fourth order approximations for space derivatives are
accomplished by using Padé approximations.

h2
(I + E5§> be;; = Oebigs (12)
and
k2 9
(I + E(%) Qbm,j = 577@',]'. (13)
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Implicit time discretization

Temporal discretization done using 2" order Crank-Nicolson method.
Fully discrete scheme for grid point (i,7) at time level (n) is

ot (n+1) _ ot (n) , 0T ( (1) | ()
<1 + 7Ah,k;> ¢zy (1 — _Ah k;> (pi,j + 7 (SZJ + S; i ) (14)

Details of stability of this scheme can be found in [2]. On expansion

oT n n n n
1 - 220" 62 + 2062 — B 55, g )
oT n n n n
— 1+ 7(2a§i3 0% + 205" 82 — B3¢, |p™
0T -, (n)

— [0l 6 — Boy + 3 + (087 8, — B0 + x50 ) o]
+(01Yil;r1)6§ 5(n+1)5 +x (n+1 )¢;J+1

oy — B0 + xé?j”w%’zj” - @
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Stencil

L (v 1)-th time level
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Figure 1: Computational stencil: the used nodes are denoted by “e
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Elliptic Equation

2D Elliptic equation of the form

Pp P\
- (5 58) =sten

in physical plane under transformation

= 30(5#7,7)» Yy = y(£7n77)7 t=r

reduces to

0? 0? 0?
(€7 gy — BT ) g — a(E. D) 5

0 0
Pal6nTI5E + x5 = s(En.7)

3
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Discretized Elliptic Equation

1 2
a] = J2 (.’E +y7]) a2 = ﬁ(.’E? +y§)> /8 = _ﬁ(xﬁxn +y§$77)’

1
e (Jn(xfxn"‘yﬁyn) —J¢ (73%"‘9%)+J($n$§n+yny§n_$§xnn_yfynn> )

X1 =
1 2 2
X2 = — g | Je(werytyeyn) —Jn(2g+ye) +J (wezentyeyen—TnTec—ynyec |-

The discrete form of the equation (16) is

(_2a1i,j 5? - 2a2i,j 5727 + /8” 5§6n)¢i,j + (ali,j 56 - ,3” 67] + Xli,j)¢§i,j

+ (a2, ;0p = B, ;0¢ + X2, )iy = 5ig- 6
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Grid Metrics

Spatial and temporal metrics are computed in three different fashions:

o Following newly developed symmetric-conservative metric
evaluation procedure of Abe et al. [6, 7]. The procedure ensuring
automatic satisfaction of GCL identities in 2D is given by,

J = [zey)y — (@gy)e + (wyn)e — (xye)nl/2,

J1 = [(xTy)n - (xny)T + (xyn)T - (xyT)T]]/27

2 = [(wey)r — (@ry)e + (zyr)e — (zye)r]/2.
@ Using compact stencil.

@ Using wide non-compact stencil.

In all computations fourth order spatial and first order temporal

accuracy is maintained. .
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Grid Movement

Grid movements are carried in either of the two different ways:
© Using closed form expression.

@ Using Inverse Distance Weighting (IDW) interpolation.

o Initialized by Witteveen & Bijl (2009 [8]) and Witteveen (2010 [9]).

o Utilize reciprocal distance weighted sums of the boundary node
displacements to the volume vertices.

o The method was improved later by Luke et al. (2012 [10]).
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© Numerical Examples
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Flow Decayed by Viscosity

A validation study is carried out by solving 2D N-S system

0 oo 1o,
EJr(Q-V)q—EV = —Vp,

~V?p =V.[(¢V)d],

—2t

. s . =2t —2t 2 2 —4t
with ¢ = (— coszsinye &e ,sinz cos ye e ), pz—W@ Re .
A wavy curvilinear time deforming grid [1] is generated using

'k
Tij = &minth [z + Ay sin(2rwT) X sin <%>] ,

T'max — "lmin

ih
Yij = Tmintk [j + Ay sin(2rwT) X sin <%>] . (20)

gmax - gmin

We take Ay =1 = Ay, ny =6 =ny, w = 0.25, {Emin = 0 = Ymin,
€max = T = Nmax and solve using a 61 x 61 grid with d¢ = 0.0025. .
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ow Decayed by Viscosity
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Flow Decayed by Viscosity

3F 3k
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Figure 3: Comparison of vertical velocity at time (a) t =5, (b) t = 15.

Shuvam Sen (TU) HOC for Deforming Domain 30 / 55




Flow Decayed by Viscosity

=5, (b) t = 15.
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Flow Decayed by Viscosity
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Figure 5: Time history of error (a) horizontal velocity, (b) pressure.
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Freestream Preservation

Using the previous grid we examine freestream preservation property
an uniform flow (u,v) = (0, 0), computed using 2D N-S equations.
Boundary condition:
@ For horizontal velocity, us = 1 is imposed on left, top and bottom
deforming boundaries. Downstream convective condition is used.
@ For vertical velocity, v = 0 is imposed on all sides.
© Pressure on the boundaries is computed using

PO T S
n.Vp—n.(Rqu (q.V)q).

Table 1: Freestream Preservation Errors for 2D Wavy Mesh

Scheme Error ||v||sc  Error ||p||so
With GCL 2x 102 1x10%
Without GCL 4 x 10~%? 4 %1072 .
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Lid-driven Cavity

We test by computing lid-Driven cavity flow using a time varying grid.
The grid susceptible to extreme contraction and stretching is:
T = §+1500¢°(¢ = 1/2)(1 =) n(1 —n) sin(2n7),

= 1+ 1500n°(n — 1/2)(1 — n)%¢(1 — &) sin(2n7). (21)

1

SEsas=s:

o o R ]
0 0.2 04 06 08 1 0.2 04 06 08 1

(b)

(a)
Figure 6: Grid at time (a) t = 0.25, (b) t = 0.75.
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Lid-driven Cavity

© 7T @

Figure 7: (a) Horizontal velocity, (b) pressure, (c) u along vertical centrel
and (d) v along horizontal centreline for Re = 100 (1982, [12]).
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Lid-driven flow in Deforming Cavity

The scheme is applied to a closed flow case with deforming boundary.
Lower wall of the cavity deforms with a prescribed form [11] as

Y

As1n(27rf7-)( c(-a1)? _€C(§fa2)2)

(22)
with A =0.1, f =02,

c =60, a1 =0.375, a» =0.675, 0 <¢< 1.

. () (b)
Figure 8: Grid at time (a) t = 1.0, (b) t = 4.0.

36 / 55

Shuvam Sen (TU)

HOC for Deforming Domain



Lid-driven flow in Deforming Cavity

(a) . (b)
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Figure 9: Horizontal velocity at periodic state for Re = 100.




Lid-driven flow in Deforming Cavity

Figure 10: Vertical velocity at periodic state for Re = 100.
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Lid-driven flow in Deforming Cavity
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Figure 11: Pressure contour at periodic state for Re = 100.




Lid-driven flow in Deforming Cavity

(a) . (b)
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Figure 12: Horizontal velocity at periodic state for Re = 500.




Lid-driven flow in Deforming Cavity
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Lid-driven flow in Deforming Cavity
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Figure 14: Pressure contour at periodic state for Re = 500.




Lid-driven flow in Deforming Cavity

=T ()

Figure 15: (a) Horizontal velocity, (b) vertical velocity, (c) pressure histor.
and (d) phase portrait of u versus v at (2/16, 13/16) for Re = 500.
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Oscillating cylinder in Cross-flow

Study the case of circular cylinder oscillating laterally in a free stream.

o Streamfunction vorticity formulation is used

(09}
o + uwy + vwy — E(wm + wyy) =0

—(Yzz + hyy) = w.
o Oscillatory velocity transverse to the flow is imposed
Ve =247 frcos(2nfr7), fr=fn/fe, Ar=A./D.

@ Numerically generated multi-block grid is used.

o IDW interpolation is used to generate time deforming grid.
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Oscillating cylinder in Cross-flow

Upstream | Downstream

) = Potential value y=(9x-Cx?)/8

Potential flow
condition
=0,9,(V,V,)=0,3,0=0

ow+ay

) = Potential value y=-(9x-Cx?)/8
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scillating cylinder in Cross-flow
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Figure 17: Deformed grid using IDW at time (a) t = 2.0, (b) t = 6.0 wi
A, =12, f = 16.
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Oscillating cylinder in Cross-flow

Tp_— 4
=———————— :
== = — :

0 5 i0 15 20 (a) o 5 10 i5 2 (b)

Figure 18: (a) Streamlines, (b) Vorticity contours, (c) Lamb vector plot, .
(d) Drag and Lift coefficients at A, = 0.4, f,. = 1.03, Re = 392.
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Oscillating cylinder in Cross-flow

A b o m
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Figure 19: (a) Streamlines, (b) Vorticity contours, (c) Lamb vector plot, .
(d) Drag and Lift coefficients at A, = 0.5, f,. = 0.93, Re = 392.
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Oscillating cylinder in Cross-flow

E%%

C.Cp

g 5 16 15 20 ( C) Time ( d)

Figure 20: (a) Streamlines, (b) Vorticity contours, (c) Lamb vector plot, .
(d) Drag and Lift coefficients at A, = 1.0, f,. = 1.33, Re = 200.
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Oscillating cylinder in Cross-flow

A b o m

C.Cp

Figure 21: (a) Streamlines, (b) Vorticity contours, (c) Lamb vector plot, .
(d) Drag and Lift coefficients at A, = 1.2, f, = 1.6, Re = 200.
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Oscillating cylinder in Cross-flow
(streamlines A=0.4 F=1.03 Re=392)
(vorticity A=0.4 F=1.03 Re=302)
(streamlines A=0.5F=0.93 Re=392)
(vorticity A=0.5 F=0.93 Re=392)
(streamlines A=1.0 F=1.33 Re=200)
(vorticity A=1.0 F=1.33 Re=200)

(streamlines A=1.2 F=1.6 Re=200)

(streamlines A=1.2 F=1.6 Re=200) .
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Thank you for your attention.
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